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FINITE DIMENsIONALITY IN THE COMPLEX GIN~URG-LANDAU EQUATION

C R. Doering, JO. Gibbon, D.D. Helm and B. Nlcolaenko

ABSTRACT: Flnlte dlmensionallty IS shown to exist In the
complex Glnzburg-Landau equation

,4~ = M + (l+lv)f4 - (l+iB)AlA12
xx

Pertod!c on the Interval [0,1]. A cone co,ldltlon Is derived

and explu!ned which g!ves upper bounds on the number of Fourier
modes required to span the un!versal attractor and hence upper
bounds on ttla atLractor dlmsnsion itself. In terms of the

parameter R thoso bounds arc no~ large.
+-or 3!F;,tan=e;ow::nb:::d:

/3, the Fourier spanning dlmenslon IS O(R
●re estlmstsd from tho number cf unstablo sldo-bands uS!ng Ideas
from work on the Eckhaus !nstablllty. Upper bounds on the
dlmens~on of the attractor itself are obtained by bcund!ng {or,

for IIJl s J3, computing exactly) the I-yapuncv dlmonslcn and
Invoking 3 recent theorom of Constantly and ~olas, which aSSOrtS

that tho LyaCunov
formula, IS an upper

$1 INTRODUCTION. D*spl’

qual!ta:lvo naturo of the

dlmonslon, def!nod by
bound on the Hausdorff d

tho Kaplan-Yorke
mens!on.

In undwstand\ng the

h nonllnoar systems can

e Lhe groat advances

various bifurcations vhlI

Anclergo, the rnaln results havm gonorally boon confl,lod to flnlte

a!m~nslonal probloms, Tho Infln,to d!menglonal naturo of p d e’s has

caused obvious dliflcult es. Thg questlori of wothor ostIYnsIblv lnfln~te

ci!mzns!onal systems can, In ract, b-havo In ● f’tnite cl!menslonal way

WI thou? !ntroducl,lg sovorc ●pprox!matlons !S ono uhlch has taxed bct~

appl ‘od and pure m<athomat IC !cns for two decades It Is usual * ;~

:omputat!onal mathoma!.lc!ans to empancl ● p d.o In Fourlor or other moIles

and, Put of n.cewslty, InCroduco Somo form ef modal Lruncatlnn *!.

*f=ey -ar SFOW Sucl-mss in daLorm!mlng uhother o system has Alloarert .

~t.,q~!I !se~ ~nt~ a ~~nl*@ number of modOS by ‘J:. IJf ew~erlence arIrl Sk I

“+e methods t.hoy ●mploy aro morm w tho hourist!c Iev*l ‘)n~ll ,-*;*r-* ,

no r ! ,gornug proofs havo ●nlztod wfI\clI dotormlno &ether a \,s?em

]ucstlon Is !rul~ f!rlf.o dlmanslonal “Yh, tr,jncat!on nei-essar , ‘

!ntograto a g!von ●quatlon on a mach!no could eamlly !n(roci!jce bnhA. 1 ,

which ~S purely ●n Irtofact of that trurlcat!on MI!!. ● DrOof ~f “,1’-



.

climenslonallty In the full three dimensional Navier Stokes ●quations !s

sti 11 beyond us there has been some considerable progress In simpler

problems. Indeed, It has been this Drob!em of flnlte or ‘low’

5imensionallty *lch has started to engage the minds of analysts ir the

last two or three years. The two closely interlined sets of work on the

establishment of a ~inite attractor d!menslon for p,d,e’s [1-8] and the

work on so-cal led Inertial Mnifolds for the Kuramoto-Sl vashinsky (KS)

equation [9-11] has stimulated the actlvlty In this area. The KS

equation

(1.1)
‘t

+ Ml + u ● U =0
x xx Xxxx

periodic on [0 L], has a Iinoar growth rate which IS

(1.2) ~ = k= - k’

Discrete modes for which kz > 1 are stable s!nce A < 0. The idea of the

so-cal led ‘coFe cond!tlon’ which appear- in [91 Is simple In physical

terms. The system Is not In ●qullibrlum since ●nergy is beln~ pumped In

through the unstablm modos &z C 1, The stablo modes Icse ene~-gy by

dlff~Islon with the energy IOSS lnCrOaS\ng ●s k !nCreaSOS, ●s equation

(1.2) shous The nonllnear term pumps ●nergy !nto the higher modes

~lowever, ●nd so tne two procossoo co~ete. There Is houevar, no a priori

reason to suppos. that ● fl~ite nu~er of modes can overcome the

non] ~near terms In so~ senge but in fact It t~rns out that this Is SO.

The ● im IS to estlmato ● valus of” N, der!ved from ● cone condltlon, Wlch

shows when the modes k ~ for n ( N control the modes for wh!ch n E V+l

This control, which !s ●chieved through ● con. condltlon, slaves ?:?e high

modes to the low modos by means of ● gloOal %Iav!ng inctlon O %e

!nertlal m~nlfold Is .Ssentlally th. graph of thlg f,~nctlon @: It IS a

smooth lnvarlant ●x~onentlally ●ttracting man!cold *$c}’ Canta!ns the

,Jnlversal ●ttractor b this manifold the D d e IS a flnlte

jlmel?f~onal dymamlcal system This Idea of slaving an ~nf~n!ke number ,>f

jegrees of froodom LO a f!nlte number af degrees of freedom establishes a

.dlFOCt connection be~ueen Inflnlto dimensional problems #nd the elegan?

and lm~ortant work of recent years on f!n!te dlmenslmal ,yynam~ral

systems
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cond

(1

Th

Wtl

This paper wtll concentrate

t!on, therefore establishing

the complex G!nzburg-Landau

t!ons on [0,1]:

3)

s

ch

,4t = R,4 + @Axx + 7AIA12

on showing how to construct a c3Fe

the existence of an inertial manifal~

(CGL) equation on periodic boundary

s a simple example of an equation vhich has a good physical peaigree

can be used as an archetype *;- understandlng how p.d,e’s wnich

possess rotating wave solutions behave. It too haS a bandwidth of

unstable modes stnce the growth rate of rotating waves solutions 1s

(1,4) A u R- k2

Hence all modes IrZ < R are unstable and kz ~ R are stable. There is a gaD

In the spectrum

(1.5) An-An*L=

whl?h Increases Ilnearly with n. Clearly therefore It Is an Ideal

candidate for an Inertial manifold calculation.

The CGL ●quation occurs ●s ●n ●~lltudo ●quat!on on long space and

t!me scales In ● variety of problems ●nd wa$ flr$t derived by Newell and

Wltehead [14] ue~ng the fln!te bandwidth co~cept One set of

clrcumstancee !s In Taylor vortex flow ●nd convection [12, 13, 15] where the

coefficients @ ●nd ~ ●re real. For Polseullle flow [16-18,20] these

coefficients w. co~lew. In the latter case 7r J O ●nd the equation

blows up In fln!te ttma [17-19], There ●re, hewever, two cases when ~r

~ o [201, Tho co~lex Glnzburg-Landau ●quatlon ●lso occurs In studies ‘I

:homlcal turbulonco [21-23], The stability of rotating wave solut!~ns ‘..>

sidebandm ham ‘Jeen ntudied u!dely [24-271 and various papers na.e

~nve$tigated nu~rlcally the posslb, l lty of chaos and Dattern ‘srmat~ )n

[20-331 S!nce the Intent Ion of this paper Is to conslaer iar’,>u%

●spects of flmlte d!menmlonal behavlour, we shall Chooze 1 “ f) : -,jp~,j.
r“

tt

*

ar

occur

61 41 ■ RA ● (l*Iv)A - (l*lp).41#41J
Mr

la the c!rcmstances III Alch th~ CO~

ses in the .Eawles above !s often highly



explanation of W3Y it occurs so frequently

waves can be given in a few lines, Let

g de.

whose complex dispersion relation is Q = u(k,

in the theory of nonl inear

us consider a linear scalar

p). H is a smooth function

af its three independent variables, p is a parameter such as, for

example, the Reynolcts or Rayletgh number, The system is unstable when

Qr > 0 so there is a neutral curve in parameter sDace p = R(k) on which

Ur = o. One can think cf linear, oscillating, neutral Iy stable waves at

the most unstable wavenumber kc being expressed In the

(1,8) $ = 4 exp[i(kcx-wct)l + cc,

NOW let us consider the nonlinearity of the system in

can think of the complex disperslorl relation becoming

ampl ituas:

(1,9) ~ = ~(k,p,!~lz)

form

such a way that we

dependent upon the

situations like this are not unknown, for example in optical flbres, whera

the refractive index of the mOd\um is amplltude dependent. This is

eqi)lvalent to solving the pd.e In a modif!od model form (for example see

[14])

[

a a(1 10) y ~=;
1

p; ~z #t= o
a—i’‘

to take account of the ron linear terms, If we now Introduce a ;mal 1

pa~nmeter c defined by Cz = # - pc Alch shows how far w. are above the

crltlcal point and then deflnc S1OW spac~ and time scales ,X s C(X-C ?) and
f?

~ s c~l, we can then expand M in a fourfold Taylor serlus and have 4

dependent on X ●nd T, using (1,81 and romovlng secular terms at O(C ‘)

gives equation (1,3), In general, 6 and 7 WI1l ba complex. The number R

‘$ now ● measure of how far tho s~tem In quest.lon Is above crlt!cal !ty >n

tmese length and ~im~ xcales and IS therefore used as the rnaln b!furcatlon

parameter In the croblem. The correct spat. and time scales to use ‘~

the CQ ecluatlon are the slow K ●n~ T varlablos der!n.d abOvO but ‘~

*Jt~rQ sect tons ~te dill reve?t to the usage of small x and I f-r

slmpllc~ty

?h~ main \gga O* this paper Is to show +.hat the !:.m~’pw

G~~Zburg-Landau equat!on Is I(JW d!m~ns!onal ’ ,n the sense 1? has a f-be

‘0’Jr19~’ s~ann~~g d’mens!on see $2) and a {In!te attractor d’mens’or ;4

‘~ achieve these ~es’Jlt%, W@ will Jse tho Idea of lner~!al man 3 6 :5



developed in [9] for calculating the Fourier spanning aimenslon and the

methods developed in [35] (see alsc [1-8] )for calculating the attractor

dimension. The work discussed in this paper on both the cone condition

and attractor dimension has been developed by the authors of this Present

paper in [361 and on the attractor dimension in [37]. Following cn from

this, finite dlmensionality has been shown to exist a saturable form of

the CGL equation which cccurs in the ring laser cawity [381. The

ubiquity of the complex G\nzbur~-Landau equation makes its behaviour

important in the sense that it would be desirable to know how

equation works before trying the harder and more general systems

wh~ch it der!~es in the first place. In $3 we will show how

results fit In with ppevious work on the sldebana instability [24-271

$2. THE CONE CONDITION FOR THE

condition, introduced in [9], enab

modes needed to span the attractor

explain the general Ideas behind t,

this

from

hese

CCL EQUATION. The idea of a cone

es us to est!mate the number of Fourier

Following [9J we will firstly try to

hls snd then go on to prove that there

is indeed an absorbing set in the Hllbert space X ■ L,2[0,1], Lhen we b?!ve

obt~ined bounds on the necessary norms we w 11 then establish the

estimate of the number of Fourier modes needed to span the attractor.

These Fourier modes will be e!genfunctions of the L?,placian so let JS

suppose that. we re+:re N of them. We will define PM to be a projection

operator which proJects solutlons on the universal attractor onto the

first N Fourier modes Iknl S kN.

projection onto ●ll othor modes

property” Is ● means of control

Figures 1 and 2 give tho idea,

lJn!VerSSl attra~&Or, Cef!nlng a

construct ● cone by means of a qua

ON= I-P ~ is the Infinite dimensional

The idea of z “cone
lknl ● ‘~+~’

ing thr high modes by the low modes

Let A ~na A“ be *WO solutions on the

= ~’-~ with p = PNa and q “ CJVd, we can

Ilty L wh!ch Is defined by

!21) L = Ilqll: - 2I!plll

Inside t:>e cone we define L J O, on the cone L = O S02 outside L ~ I)

II-II denotes the norm In M a L2[0,1] W. now noto that outside the cone,
2 a

when IIqll <’ llp112 ,
1

the high mode!i ●re controlled by the low modes s’~f:e

low W~VO r,(4mbor modog can vanish only wtwm h!gh modes <an!sh We can -’s$

de, Ine a fuflctlon(soe 7])

(2 2) @ P/* ftracfor)c P,#+O#



QNH

A(t)

P#

Figure 1: Illustration of the cm~ condition. At ●ach Doint a~ong a

trajectory A(t) a cone can de drawn and all ath~r tra]ectorles
(such a; At(t)) are ~~cludcd from the Interiors of these cones,
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QNH

/

UNIVERSAL
ATTRACTOR

P~H

/

Figure 2: The cone condition on the attractor implies that the
proj~ction (PN) of th~ attractor onto the finite dimensional

sPace (PNH) is one-to-one onto its image, and hence

invertible there (0 = P
tj

-’).



whi ~h maps a subset of tt,e finite dimensional space
‘?’ ‘e

PN(attractor), into the remainder of the configuration space. Hence we

can write

(2.31 Q# = WP#)

and the nature of the finite dimensions’

the high modes by the low modes

(2,4) A=P
#+c#

= PN + @(f’@)

ity cac be seen by a slaving of

1Ow high
17U3CL?5 mo&s

We can at least give a descriptive account of how the cone idea al lows a

projection which !s well deffned i.e. (2.2) yields a unique value for 0.

In simplified terms, let us th!nk of two solutions A and A’ crossing in

configuration space such that they may not touch but there may be at least

one point or one which lies vertically above or below a point on the

other. At this point P
@

= O and hence L > 0, This can only occur

inside the cor~e by definition and there is no unique projection at these

points. However, outside the cone we can project the attractor one to

one onto its image. The task is therefore, to find N such that we can

make L < 0 as t + a, IT we can achieve this, then asymptotically we can

achieve a projection onto N Fourier modes. One can th!nk of the cone

construction as a way of ‘combing’ the attractor as t + oa such that a

one-to-one projection can be achieved with unprojectable ‘entanglements’

occurring only inside the cone. An inertial manifold is a smooth

(Lipschitz) exponential ly attracting invariant manifold which

contains the universal (global) attractor.

manifold the CCL equation is equivalent to

dynamical system. This projection now

at+,raetor Lo be spanned by 2N+1 Fourier modes.

Restricted to this

a finite dimensional

allows the ~niversal

This provides an upper

bound on the ●ttractor dimension although tti;s estimate is not necessarily

good , With ● cone condition, it is possible to use standard Invariant

manifold techniques, such ●s centre mmifold methods [34] to perform the

required extension to an in~rtial manifold, This suggests the

ldentif!cation of an inertial manifold, ,~ich IS the graph of the

exten~ion over the nod domain, as a global centre manifoid, The

geometric idea of an inertiai manifold IS given in Figure 3 and can be

pursued in references [1-9]



QNH

/

INERTIAL
MANIFOLD

.

PpJ

/q ‘NH
/

figure 3: An inert;?l. manifold is the extension of the domain of
definiti. of O off of the projection of the attractor,
preserving the reduced dynamics. The graph of O 1$ an
invariant, exponentially attracting manifold in the
configuration space that contains the universal attractor.



The idea of a cone condltlon, explained above, enables us to estimate

the number of Fourier modes needed to span the univ~sal attractor but

before we explaln how to do this, It is necessary to prove that there

exists an ‘absorbing set’, Let us define a mass M(t) and an energy E(t)

by

J
1

(2.5) ~. lA12d.K
o J

1
E. lAx12dx .

0

Differentiation of M u.r.t. t and substitution of At and At@ from ~he CGL

equation g!ves

(2.6) ~~t =

whence the use

RH-E

Gf the

- (’lAl’&
‘o

Cauchy-Schwarz !nequal!ty gives

(2.7) XI$SRH-E-U2SRH-HZ

so

(2.s) /’t(t)s R[l-exp(-2Rt)]-1

Hence In our I+llbert space H ● L2fL7,1j, the flow contracts Into a ball of

radius R(u) = [(I+u)RIM in a finite time t(a) = -

other words, H s R as t + m , for all v and p.

calculation whose details we wI1l not give, we have

between Ipl ~ fi. We f!nd that

(2.9a) Ilm E s (I+U)2R2 IBI si3
t-

<ln[u/l+v]}/2R. In

bhen we turn to E, a

to make a distinction

It is now necessary to f!nd a uniform Lm norm for A(x,tJ. These t~rn out

to be, for v arbitrary (see [361)

Iim 114112 = Ilrs suplA(x, t;!2
t+m m t- r

L
(2.10b) R + 23R2(l+(l+d-2(1+~)/R)M) l/.Il ~ fi

It Is also possible to find bounds when v = O and p arbitrary [36]

Let. us I-IOU return again to the Cone cundltlon, In terms of a=A’-4. *he

difference bet~een two solutlons, we have

(2.1!)
at

= Ra + (]+ivjaxx - {l+ip)[~’1,4’ 12- AIA12)



Operating on this equation with P ~ and O,V to form

(2.12a)
Pt

= Rp + (?+iv)pxx - (I+ IB)P,V(,4’1?’ 12-,4

(2.’2b)
Qt

= Rq + (]+!~)qxx - (?+ip)Qv[~’1,~’12-,4

Multiplying (2,12a) by p*, Integrating over [0,11

and repeating the process for (2. 12b), we obtain

a 2
1

2 + Re{(?+iv)
‘2’’3a) x 57’ 1’P”2 = “’P”2 J

p“pxxdx}
o

p and q, we have

.4[2]

,4121

and taking the real D3rt

- Re((l+ip)
J

lp*PNfA’l/l’l 2-Al#4121dx)
o
1

(2.13b) .’4 ;7 Ilqll; = Rli qll : + Re{(l+iu)
I

q’qxxdx}
o

I

1
- Rc((l+ip) CJ”Q,VL4’L4’1 2-(AlA12jdx)

o
In or~~er to construct a difeerenttal inequality for L = llqll~-ilpli~, we need

to estimate not only the nonilnear terms but the terms:

J

L 1
(2.14) Re{(l+ivl [Q”qxx -P’PXXMX} =

J
(lPxl-lqy12Mx

0 0

}’~wover, we kno’w that on periodic boundary conditions

f

1
[2,15) lpx12dx s kN2 Ilpll;; /’ Iqxl 2dx z k,v+1211qH ;

o 0
The right hand s:de of (2, 14) now obeys the inequality

J

1
{216) (lPX12-IqX/2)dx s k,V2 Ilplt: - kN+1211qN;

o

Subtracting (2.13a~ fr~m (2,13b; and using (2,15) we have

(2 17) x ~ (llq112 - Ilpll; ) S (R-k,V2)(llq112 - llp@ - (kv+L2-kv2)llqll~
2 2 J

+ nonl inear term

~dow we can obser’~e how the gap competes with the nonl Inear f f?r’n5

‘z Ig) ~~t S (R-kN2)L - (2,N+l)k1211qll: + nor,l I near term

‘nere are two points here, Firstly, as we expl alned in ~1, stuble T(::es
z

>cclJr when k
,N’2

Hence the s~gn on the nonl !near term 1. Is negat ‘ .-
2

If we can bodnd the non; lnear terms in terms of llq112 !h-n we can .-r, ““?

*.hese terms by choosing V large enough, Bounds on th~! nonl lnear- +● , #v.-

can be found !n the fol!owlng way:

1
‘,? ly) VOnllnear term = - Re’(l+tV)

J
((7”dv-p”P,vHH4 : ’-4141’:!,

o



Using the fact that the projections

(2,20) ,Vonl inear term = Re((l+

?art of the lntegrand of (2.20) can

are =elf-adjoint, we find

J
1

p) (q”-p*)(.4’ l.4’ 12-41.412)&}
o

be written as

(2.21) ,4’1,412-41!412 = a(l.4’ 12+1,412) + a~.4,4’ = (p+q)( l.+’ [2+ 1,412} + a*,4,4’

and we find Chat

(2.22) .Vonllnear term
{

= - Re (I+ip) Jb#+ lpl2- 21/m(q’’p)l
0

1
x (1/1’12 + 1,412) + (I+lp)

J
(p*2-qM2)AA’dx

o }

s 211/4112 Ilpll: + 4pll A112
m J

lqllpldY@

+ lI+ipl(l!p12 + llqll~)ll,4112
2 m

s llAll~ r[211pll~ + 4yllq1121il>ll + I+y2 (llpll~ + llq112)\
2 2 2

Consequently we have

(2,23) KLt S (R-kN2)L - (2N+l)k1211q112
2

Inside the cone, khen llqll~
2

J llp112 (L ~ 0) we :an choose V l~rqe enough

such that

(2 24) XLt ~ (R-kN2)L

and so L !s decreasing as t + m for thcso modes (stable modes) for whtch
2

+v
? 1?. When L reaches zero on the cone, WIS find that Lt , () and

to L decreases furtl?r to become negative, Once negmtlve, It must pemal,)

negative In summary therefore, If we c)~oose

where kils the fundamental wave number, then trajectories lnslle ‘.’Ie

absorbing set which are Inside the cone are expel led from the cone i , af~

exponential way as ~ ● ID and once outside rOmaln outs!de We note ‘hat

we have the Stst!mates fcr 11,4;;z In ecluatlon (2 10) This nstlmaf.~ ‘s ,a’~
m

IJppcr bolmd on the attractor dlmens!on un!form In u Eqt,atlon (: ‘ ‘
1,2

shows that th!s upper bound goes I Ike R for IBl S v’.~ and like RJ * \r



@l ‘, a. In fact in [36], we find that Vmax goes like R when LI = O ‘:r

al ! p, These bounds are obviously dependent UOOn the estimates for :1,411
~

n

53, THE MGDuLATIONAL INSTABILITY: LOWR EIOIJNOS ON THE FWRIER SPANNING

ANO ATTRACTOR DIMENSIONS. The CCL equation is well known to possess

so-cal led rotating wave solutions. These must be contained !n tme

universal attractor - indeed they form a lower bound on both the Four’er

spanning dimension (D) and the universal attractor dimension (d) These

solutions take the form

(3.la) #n = an exp[i(knx-wnt)l n = 0,1,2,...

(3.lb) Un = Ru + (p+v)k 2
n

(3.lC) Ianlz . # = kn2

The first set of bifurcation points are RX = knz (kn = t2Trn) for e&ch

n, includ!ng n = 0, which grow off the zer~ solution. Although these

solutions appear trivial, they are expressed in teems of Fourier modes and

so they give a lower bound on the Fourier spanning dimension

(3.2) DsD m l+2[Rh/2n]
~,1

Each Four!er mode k may be stable or unstable to a neighbour k TO
II ●

test for this we use the method described In Stuart & DIPrima [26] ‘or

a{scussing the Eckhaus lnstabilty [24-25] This requires us to look at

the stabll, ty of An In the following way. We write

(33) ,4 = A#t)[]+~f~,t)]

We now $Ubstltute this Into the CQ etq~,atlotl

’34)
‘t

= ~A + []+lV)AXX - (/+1B)Al,412

and I!near!se In B, This g!ves

(35) Bt - (]+(v)DXX + ~l(~+@)kn8x - (l +IM)la,ll?(fj+B”)

kn aga~nst ancther km. we ~rtte~10 test fo(- the stabillty of a wavenumber

B as

[36) B ~ p’(t) erp(lkmx) ● p-(t) exp(-lkmy)

and obtain for p“,p-



?~eutral curves can be found for the Hoof bifurcation in (3. ~) whl,nrn :cc .r

hen
2

(lanl +k ~2)2[(1 +v2)km2+261anl 2]
09a)4k2=- —

n
( lan12+km 2)2 + ~~lan(2 + ukm2)2

(3!3C) lan12 = R-k 2n
The s!gn Of c IS important since It determines the asymptotic directi>n af

tre neutral curves in the k
2

versus R plane, in the following ‘.-o

diagrams,
‘!4

if a point In the (R ,Iknl) plane Iles above the mth curie then

the nth rotating wave IS Mstable to the mth sideband and if the point.

Ites below, it Is stable. Figure 4 !s plotted for values p = - i~, b) =

-30fi so that G = 91 and F!gure S has values p = - fi, v = +30 ~ so e =

-89.

The general features are as follows. *en v 1s large and negative

the curves are bunched up along the diagonal and each rotating wa ‘

becomes llnea-ly stable as R is Increased, This region (e > 0) IS known

as the modulationally stable regime [251 since the k = O solution IS

always stable. Our calculations hers general se the results In [25]

wh!ch was based solely on stablllty of the k = O mode (spatially

homogeneous states) - our results here are val Id for any k,, In the

limltof v+- m the relatlon between kna and R b?”ames I !near

Independently of B. As v IS increased, the curves unfold *en 14 = I’

(3 10) kn2 ■ ;R+:kmz

again lntiependentiy of p.

As v Increases such that ● becomes negative, the curves turn >ver ar?d

cut the R-axis, This IS now the modulatlonally unstable regime as each

rotating wave WI I 1 eventual ly become unstable to any km as R IS Increased

As u !s Increased

thO orlgln, The

(311) V=-(I

the lnter?ectlon oolnts through the R-axis get cl>ser t.>

r POint of clOSOSt ●pproach occurs at

V’(l+ph?q.l
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:an be found !n [36],

The value of R at which the spatial Iy homogeneous rotating wave

Cecomes l~nstable to side-band perturbations of wavenumber k 1s
m

,3.!2) R = - km2(l+v2?/2c

We now proceed with the task of Lh!s section, to develop lower bounds

m the attractor and Fourier spanning dimensions. First, for ?he

attractor dlmonsi on .wo note that the Ilnearlz@d stability arlei~sis

(!ncluding neutral modes) gives the d!mension of the unstable manifold o?

each of tho rotating wave solutions. For each Speclflc set of the

parameters p and v, th!s SOt of dimensions for the rotating ~ave solutions

can bO determined as a fUnCtlan of R simply by Count!ng, using the plot of

neutral

anywtw-e

ka, the

[2.6) IS

(3.13)

stablllty curves. For this counting It must be noted that

in the physically relevant region In the (R,k2) planO, !.0, R k

sum of the real parts of the two ●lgenvalues of the matrix In

negative:

Re(AL) + Re(Aa) ■ - 2(lanl J*km:) < 0 .

Thus , at least one of the ●!genvalues has ● negative real part, This

means that *on ● rotating w~ve 1!08 In the unstable region of a

particular side-band It has only ● one dimensional unstable dlrectlon

●ssociated with that side-band. Hence, in the count!ng procedure we ●dd

one to the unstable manifold dlmonslon for ●ach unstable side-band,

The dimension l)rot (R) of the unstable manifold for t’)e trlvlal

solutlon ,4 ■ O Is glvon In ●quation (3,2)0 Although In ●ny particular

sltuatlon the counting procedure clescrlbed above can be carried out for

any speclflc rotating wave ●nd set of parameters, there Is no convenient

expllcl~ expression for the d!menslon of the unstable manifold of an

arbitrary rotating wave solution, However, the spatially homogeneo~s

rotatlnv wave Is ●menable to computation, ●nd the rncxlmum of Its and t~O

trlv!al solutlon’s unstable manifold dimensions provides a lower bound on

th@ universal attractor dlmenslon. We wIII use th!s lower orund in what

follow,,

In the medulatlonally unstable case (d < 0) the numbmr of unstable

,Ilrectlons for the spatial I y homogeneous rotating wave IS ,Computed from

13,12)

!3 14) m = /(-J9?(l+LlJ))H(RH.2m)]



Since the rotating wave itself fs one-dimensional , a lower Bound on the

un!vorsal attractor dimension is

(3.15) d z MX(l+((-2C/(l+V2)}MRM/2R) ], Drot(R)}

We may bound this lower bound from above, uniformly in v, by recal !irg

that the closest point of approach of the intersectio!ls i>f the neutral

curves and the R ax!s to the origin occurs for v = - (I+(I+P2)A} ‘p

Hence, a lcwer bound on the universal attractor dimension is given by

(3.16) SUP d z Mx(l+[(p2/(l+(l+p2)4))x(RX/2n) ), Drot(R))
v

For Ipl s /3, the second term in (3, 16) is always greater than or equal to

the first. khan Ipl > /3. the first term can dominate the second for

some values of R, since #3 Is the critical value of M for which there

exists a u such that the homogeneous rotating wave Is unstable to a

side-band before the triv!al solutlon goes lJnstable to the sacond (k = 2-)

rotating wave ●s R IS Increased from 0. Won IBI 1s large? than /24 the

first term in (3, 16) is always larger than the second, We summarise

these lower bounds on .he universal attractor dimension, uniform in v, as

follows:

We remark that tho border-line sltuat!on IBI = /3 has smeared in the

prevlwa soctlo~’~ In the nonlinear analysis

Next, t.o obta~n lower bounds on the Fourier spann!ng d!mension ~) w!?

utl Ilze some different fe~tures of tho neutral stabll Ity CIJrVeS ,Jbtalr~ed

from the side-band stablllty analysis. As oafore, we could f.ak~ tha

pedestrian route for ●ach valuo of the parameters and slmpl y count , but we

seek ●nalytic ●xpress~ons - and ●special ly some ●violence of uniform!!.y In

the parameters, Along the diagonals In Figures 3 and 4, wher~ t~,~

rotating wa~es come !nto ●xlstenco, th~ intersections ,Of the ne~,?r a

1
curves occur In a rog(~lar way: sottlng I(J,lI = O In (2 13) we ha,? A “ “

11

kni4 lhus, when tho I,th rotating wavo comes Into existence, “ ‘“~

,JnstablQ (or neutral ) to the first L’n side-bends [t Immedl,s!e’ ,



Stabilizes to the 2nth side-band, althou~h it can go unstable to that

side-band again as R is increased. Away from the diagonals in fig.

where Ian[z ~ O the matrix in (3.7) is not diagonal, so It takes both

Fourier modes (fkm) to span the relevant unstable direction. An estimate

on a lower bound for the Fourier spanning dimension - really an upper

envelope on any lower bound ubtained this way - is then given by

(3.18) sup D z > l+3[R%n1 ,
p, v

where the 3 comes from he fact that the highest wavenumber that supports

an unstable dlrectfon - the nt.h rotating wave at R * kri 2 is 2n(n+2n):

this count includes both the number of Fourier modes required to span all

the rotating waves, as wall as those required to span their unstable

directions. This count is a strict lower bound for each B and v at the

points where RH/2n is an integer and it is convenient fcr its uniformity

In the parameters.

The expression (3.18) is not an accurate estimate deep In the

modulational ly unstable regime where a rotating wave can be unstable to

many side-bands. An improvod estimate is obtained by tak!ng over the the

results above for the dimension of the unstable manifold of the k = O

rotat!ng wave, Since there are in general two Fourier modes required to

span each unstable dimension, one may also invoke the rigorous iower

bounds

$4, THE KAPLAN-YORKE FORMULA: UPPER BOW(2S ON THE ATTRACTOR DIMENSION

In $2 we used the cone condition to find ●n upper bound on the Fourier

spanning dimension, This, of courte, provides an upper bound on the

attractor dimen$ion although it is not necessarily a good upper boun~i

We would expect that direct computation of the attractor dimension thro~~gh

the Kaplan-Yorke formula [35] should provide better estimates. The

central result we will us. Is the thoor’em of Constant!n & Foias :1 I which

asserts that the Lyapunov dimension (d ) defined in [35] with ttle global
L

Lyapunov ●xponents, IS ●n upper bound orl the Hausdorff dimension ((l,,) )f

the attractor We WII1 briefly review the concepts of fra(tal an,:

Lyapur,o$l ●xponents, the Kaplan-Yorke formula ●nd pro’’ide r. heiil”!%~l,’



justification of the theorem of Constant!n L Foias in terms of’ the fractal

dimension d
F“

It wII1 turn out that Mace we compute dL exactly In the

case Ipl s /3, the lower and upper bounds ctincfdo, th~refore giving the

attractor alnmension exactly. Us t’ill also Ero%lde rlgorour upper bounds

on dL for IMI J /3.

The fractal dimension of a bounded set l! a matr!c space axtends the

usua 1 notion of dimension In eucl idean spac~, Let IN(c) denote the

minimum number of balls of radius c > ~ requi-ed *.o cover a campact set.

For a set of an Integer d!men$ion d, the nu~r N(c) is proportion to c
-d

for small c. The fractal dimmn$lon (which need noc be an Integer) is

defined by

(4.1)
‘f ‘

=Iim log(N(c))/log(l/c? .
c ~o

)+ence dF is the scalfng exponent for the “volume” displaced by the set on

a scale c,

The Lyapunov ●xponents on the attractor of n dynamical system

describe the exponential rat. of divergence of trajectories that start at

nearby points, A poe;tlve Lyapunov ●xponont indicates $@nnltive dependence

orI Initial conditions nnd hence chaos, for In this case the production of

s trajectory ●fter a I ong time roqulres an ●xponontlllly accurate

knowlodge of Its Ir!tlal conditions. To computm the gi9b81 Lyapurav

exponents, me consfders Lhe I lnearlzed flow along a tr~jectory on tne

universal ●ttractor, For ● solution A(t) ● X o: the CC1.E

(4.2) atA - M + (I+WIXW - (l+hdld?l t

the linearized flow of the vector ~(t) 6 X, along A(t), IS deflnad by

We denote the solution C(t) of (4,3) ●s L((, AO!{, unere ~ IS the Inltlal

condltlon and A. !9 the Inltlal condition for the selutlon of the

nonllnear flow (4.2), The first globs! Lyapu~ov exponent Is the rat~ fif

asymptotic exponential growth of the length of a vector ciev?loplng

according to (4.3), maxlmlzed ovor ●l 1 solutlon$ ,4(t) on the universal

attractor and ●ll possible dlroctlons of ~:

(4 A) A,: _ Ilm sup f -’log(sup SUP IIL(t,AO)(ll)
t- ,40 II gll s]



(the supremum uver AO !s rOStrlctOCl to Inlt.ial conditions on the univesal

attractor). The second global Lyaplmov exponent is determined by the

1argest asymptatlc growth rate of areas evolvlng according to the

llnear!zed flow:

(4,5) A1+Aa: = /im sup C-l Iog(sup sup llL(t, .40)~1 A ~(t,~O)~211) .

t+m A~ Ilr II-1

S!mllarly, the sum of the first n global Lyapunov exponents governs the

largest exponential Srow!n rates of n-volumes, according to

(4.6) A1+. ..+4 :
n

i.lp t-llog@up SUP ll~(t, ~O)~lA. ..A~(t,~O)~nll }
* AO 11( 11s1

In equations (4.5-6) above the magnitudes of the volume elements are given

by tho norms or? the corresponding spaces of n-forms on H, That Is, for

‘ectors ‘~’g~ ● “

<<LA.. . A~n,<LA. . . A<n> = &tft with
‘ij - ‘61’6/ ‘

where c.,.> !s tho ! n-, ●r product of M (Irl our sltuatlon,

J

1
<~,<> = *G’(X)<(X)), Loosely xpoaklng ●n n-vo!ume Vn around the

o

attractor dvvelops according to Vn(t) = Vn(0)exp[(A~+. . +An)t]. The

Lyapunov expononts oboy tho ordoring Al E AZ R . . . + =,

Tho Lyapunov dlmenslon of tho ●ttractor,
‘L*

!s defined by the

followlng proceduro. Consldor tho Intog.r m such that

(4,8) Al+.., +AmEO, but AL+, .,+ Am+,<O

Then dL Is do;lnod by tho Kaplan-York. formula

[4.9)
‘L ‘

●m+(A~+. ..+A# ]A1.~+ 1

Note that Am+, < 0 ●nd -Am+i > AL + .,, + Am ●O that a s d, < m+l, and dL

Is riot nrcossarlly ●n Intogor. Tho Lyspunov dlmonslon would seem to give

an upper bound on tho fractal dlmanslon, In view of tho following argument

[34,361. With m choson ●ccordlng to (4.8), consldcr a covering If the

attractcr by m+l dlmonslonal balls of radius c > 0 (assum\ng thta this can

b. don.), ●nd lot N’(c) donoto tho number of such balls ?oqulred. Then

after ● t!me t, tho Images of theso balls under the nonl lnear flou (4 2!

WI II st\l I covor the ●ttractor, but they Will be transformed ~nto m+l



dimensional ell!psolds of prlnc!pal axes cexp(ALt), . . . ,cerp(Am+lt).

Ignoring geometrical factors, It then takes on the order of

,V’(clenp(A +., .+Am-mA ~+l~t smaller balls of radius ctYA t ts cover them+ 1

attractor, S!nce this is by no means the fewest number of such balls

(denoted N(ceA ~+lt)) required to cover the attractor, w have

Hence, according to (4.1),

(4.11) dF s I!m log(Ncexp(Am+lt)l]/tog(c-lexp(-Am+ltl>
t-

= lim[A1+, ,. +Am-fim+l+t-llogN’ Cc)l/{-Am+l-t-llOgc]
t+m

=d
L’

Ue stress that this argument IS merely heuristic and this result has not

been proven rigorously. However, Constant!n and Folas [1] have

rigorously established ● related result,

!nflnite dimonslonal cases. [n general

is co:lslstent with the rigorous result.

We now proceed to the co~utatlon

expone’lts for CUE. The ilnearlzod

El(t) N . . . A ~(t) Is given by

I.e. d~ s dL, even in certain

dF a dti, so the reasoning above

(or estimation) of the Lyapunov

time development of an n-form

(4,12) (tidt)~l(t)A. . . A~n(t) = (~l/dt]A...A~n + . . . + 4~A...A(~n~dt)

= F(t,AO)~t(t)A.,.AEn( t) + . . . + EL(tjA. ..AF(t,~O)fn( t)

where F(t,AO) Is the generator of the I!nearlzed flow operator L(t,AO)

1.0,

(4.13) F(t,Ao)~ = RR + (I+lb)f - 2(l+l#)lA(t)12g - (?+@)A(t)2G’
xx

and A(t) is the solution of the CGLE (4.2) with inltlal cond!tlon ,4.. Let

Pn(t) denote the projection or X onto th~ span of ~l(t), . . ..~n(t). Then

s ! nce ~n(t)~l(t) we may rOWitO the t!ma development of the n-form

~l(t)A... A~P(t) ●s

(4,141 (tidt)~l(t)A... A~n(t) = F(t, @p~(t)~l(t)A.. .A~n(t) + . . .

The time dorlvatlve of tho n-volume Vn spanned by ~l(t),...,~n(t) !s then

given by



(4.15) (&dt)V 2 = 2Vn(d/dt)Vn = (d/dt)ll~lA. ,. A~n!12
n

. . . + <&lA. ./@(t,i40)0pn(t)~n, flA. .Aen>)

= 2 tl&lA. . . A.$n112Re<Tr F(t, AJ*Pn(t)) ,

where Tr F(t, AO)=Pn(t) denotes the trace 07 the finite rank operator

F(t, AO)*Pn(t). This trace formula, i.e., the last step in (4.15) above,

may be proved in general by writing the ~i’s in terms of the orthonormal

vectors spanning Pn(t)lt. It is derived in the context of Lyapunov

exponents in [11, and it fs trivial in the case that the ~i’s are

eigenvectors of F(t,A ~*P At). Solving (4.15), we obtain the time

development of the volume V ~

f

t
(4.16) Vn(t) = Vn(0) exp(Re{ & Tr F(s,AO)*Pn(s))) .

0
F-em equation (4.6), the sum of the first n global Lyapunov exponents may

be excressed

(4.17) Al+, ,.+,4,n = ~i~ s~ t-l/og[sup sup x
t-m A. Ilgillsl

J

t
x exp( Re( ds Tr F(s,40)0Pn(s)))l,

o

where, as before, the supremum over AO is restricted to the universal

attractor, We remark that although the ~i ‘s are not explicitly present

in (4,17) above, they enter t:le formula via the time dependent Projection

PnW

A lower bound on the sum of the first n global Lyapunov exponents IS

immediately obtained by noting that A. = O is contained in the universal

attractc=p and the nonlinear solution with this Inlt!al condition is

A{!] =0. Thus ,



t
(4,18) sup sup exp(Re( [ ds Tr F(s, Ah) Pm(s)})

.4~ Il<illsl ‘o

4

. ,’

J
L

2 sup exp( Ret ds Tr(s, O)*~ (s)))
Ilgillsl o

J
t

z exp( Re( ds Tr F(s, O)* P;)) ,
0

where P’
n

exp{ik ,x),

s the projection onto the first n Fourier coeffic erts @j(x) =

in ths order (J=l~ JCl= O, (j=2) kz = 2n, (j=3J JCJ = -2?r, [j=4)
J

kd = 4r, (j=Sl k5 = -31K, etc The trace in the last term of (4.18) above

is easi Iy evaluated:

J

of the imaginary diffusion, v.

(4.19) Tr F(t, O)*Pn ~ ~#j, (R+(l+IV)~x2)I$;>
n=l

n
=

I
(R-(?AW)kj2).

j=l

Hence we have the lower bourld

Note that th;s lower bound is independent

It ts alto worth remarking that this estimation of the global Lyapunov

exponents is closely related to the sideband stability analysis of the

rotating wave solutions carried out fn j3. In fact, other lower bounds

on the sum of the first n global Lyapunov exponents can al SO be obtained

by the argument above by noting that one may choose to linearize about any

of the rotating wave solutions. Fot’ a specific choice of parameters, one

may obtain lower bounds in terms of the growth rates of sidebarld

perturbations about the rotating wave solutions. Since we do not have

expl icit expressions for these rates, i.e. , expressions for the rsal parts

of the eigenvalues of the matrix in (3,7), we wi 1 1 not pursue this ide&

here, It is possible, however, that these considerations could lead to

sf-arper lower bounds, especially deep In the modulationally unstab!e

regime.

Upper bounds on the sum of the first n global Lyapunov sxporents are

obtained by bounding the real part of the trace in (4,17) from above

Let @J be a Set of orthonormal \ectors spann!ng Pn(t)J(. Then



n
(4.21) Re{Tr F(t,40)*P n(t)) = Re

I
<# J, F(t, AO]ti, >

J=l

n
--

[
[<@j, (R+3X2}tiJ>-2<Wj, lA12@j>-Re( (l+ip)<@j, .42@,j*>)l

J=l

For any vector @ 6 M and any A. on the universal attractor,

J
t

= -2 dxl A121@12-Re((l+iv)
J

dx ,42*’*)
o

s (-2+il+ipl)llA112 II*II:
m

where & = max{O, (-2+ll+ipl )), and 11,411~ is the uniform bound on ail

solutions On the universal attractor (cf. equations (2, 10)), Thus,

n
(4,23) Re(Tr F(t, ,40)=Pn( t)) s

I
<@j,R*~liAii~ + ~ ~2)$J>

j-l

n
s I 2

<#j,i:R+31i/lli + ~ ~*)@/
m

j=l

n
s

z
(R+&i/4ii2 -~j2) ,

a
j-l

equation (4,19), Utllizlng (4 17), we obta!n the upper bound

We first note that 3 = O when [vI s /3, so the

ncides with the lower bound (4.20), thereby y

n
(4 24) AL + ,.. + An s

1
{R 31i41i2 - kj2)

m
jl

upper bound (4 24)

co eldlng the global

Lyapunoti exponents exactly! As shown In the last two sections, the

parameter regime Ipl s /3 is very spec!al In the CGLE, Here we +ave

shown that in this t’eg!me, the global Lyap(mov exponents are exactly Lhos@

corresponding to the 1 inearlzed CGLE This regime {S dlstlngulshed here,

as in 52, In that the I inearlzation of the nonl Inear part of the CL-JLE )’,Js

a negative real part as an operator on X. We aiso remark that. ‘.~’~

computation of the Lyapunov exponents for Ip[ s /3 does not depend on ~~e

{.!menslon of the space !n which the CGLE Is posed: the same formula ~~~1 1’:

for the CGLE when the spatial variable x I Ives In a bounded domalr) ‘f) /i’f

with the spectrum of the d-dlmenslonai Laplaclan treated approprl!p’ ,

Secondl y, the uniformity of the dfmenslon bounds ~n the Im,l,Jl,,.?r

dlffuslon appears here as It did In the last two sections In !.he .,]r)t *.*



of the linear stabi Iity analysis and the Fourier spanning dimension,

We turn now to the computation of d, for the case IM[ s /3. The Lyapunov

exponents are

(4,25) An = R - (2n)2[n/21

where, as before, the bold

The :.yapunov dimension is

procedure, equations (4,8-9)

R;</2x is given in Figure

discontinuous derivative at

L

square brackets indicate the integer part,

then computed directly from the defining

A plot Of dL VS. the control parameter

6. It is a continuous curve with a

the points where d, is an odd integer,
L

Additionally, we may compute an analytic upper bound on the Lyapunov

dimension which is exact at the paints where dL is an odd Integer:

(4.26) dL s 2(3R/4Tr2+b’4)X ,

The upper bound (4.26) is also plotted in Figure 7, as wel 1 as the lower

bound on the dimension given by (2.17a). Note the uniformity in p as

wel 1 as v in this parameter regime, The upper and lower bounds are both

asymptotically proportional to RX, and their slopes for large R differ

only by a fctor of 43.

*en Ipl 1 /3, we only detsrmine the upper bounds on d ~ (and hence

dH) rather than computing it exactly, If the sum of the first n Lyapunov

exponents is less than or equal to (?, then d
L

<n+], From the upper

bound on the sum of the first n Lyapunov e~ponents (4.24), using the fact

that n s 2[(n-1)/21+1, we determino tho a sufficient condition for

cfL < n+ I is

(4 27) (2(n-1)/2J + l)(R+dllAll~) -(2n)2[(n-1)/21(((n-1)/21+ 1)

(2[(n-?)/2;+l)/3 s 0

From this expression it is easy to solve a quadratic equat ton in

[(n-1)/2] and find that

(4.28) dL < 2(3(R+811All:)/fm2+l/4)K + I

The expression (2,10) for ilA’1~ may be inserted Into (4 :8) abovp ‘ ~

express the upper bound on d
L

in terms of R and IMI in the case t’ ● ‘j

Fof’ iarge R, the upper bounds on d“ and d may be $ummarlzed as
L

(4 29a)
‘i}{ s ‘L

f M7(RH/217) + 1, Ifll s /:1, 1, ,]~.t,l tr ,11 \

(4 29b) (; s d
tiL

~ (<7/n)lPIR+.71plXRX% + 2, 11.JI * /’{, 1, ,Ifhl(fl!l \
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Figure 6: Plot of th~ Lyapunov dlmmsion vs. @ff@ctlv@ Rcyno[ds numb~r
for the CGLE with IuI < /3 (pi@c@uise diff~rentiab(~ curve) and

the upper bour(d. Th@ piQctuisQ constant curv~ is the
lowor bound on th~ attractor dimension Drot.



.

Figur@ 7: Upper ●nd lotmr bounds on the sttractor and Fouri@r sP#nnlnq

dimmsions v~rsus Logf! with [PI </S.



Results can also be found [37] when v = O and M arbitrary. Finally, we

remark tt’at In July 1987 at this same AMS meeting we discovered that

J.M. Ghit,aglla & B. Heron [39] have also calculated essentially the same

attractor d~mension estimates for CGLE as in our $4 and we thank them for

a copy of their paper.
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